Remote Sensing of the Arctic Ocean using National Technical Means

Melinda A. Webster¹, Ignatius G. Rigor¹, Donald K. Perovich^{2,3}, Jacqueline A. Richter-Menge², Christopher M. Polashenski², & Bonnie Light¹

6th Symposium on the Impacts of an Ice-Diminishing Arctic on Naval and Maritime Operations

¹Polar Science Center, Applied Physics Laboratory, U. of Washington, Seattle, WA.

²US Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH.

³Thayer School of Engineering, Dartmouth College, Hanover, NH.

Arctic sea ice: then & now.

- Shift to younger ice cover.
 - → Changes in processes of the Arctic sea ice system.
- One of the largest areas of uncertainty in modeling sea ice and its changes is <u>melt pond</u> <u>evolution</u>.

Melt ponds:

Melt ponds:

- Puddles on the ice surface.
- Low reflectivity (a = 0.3-0.6).
- Increase solar absorption
 → increased melt.
- 2-3x solar transmittance^{1,2}.
 - More PAR.

Shift to younger ice cover:

- ~30% multiyear⁶.
- ~45-75% first-year^{3,4,5,lots}.

¹Light et al., (2008); ²Nicolaus et al., (2012); ³Scharien and Yackel (2005;

⁴Petrich et al., (2012); ⁵Polashenski et al., (2012); ⁶Perovich et al., (2002).

~45-75% on landfast

first-year ice:

Landfast ice:

- Is influenced by warm air and dust from nearby land¹.
- Has a different snow distribution, because landfast ice:
 - (1) freezes up earlier, (2) has a fixed orientation to winds, and (3) has extreme surface topography due to near-shore compression.

Where are the studies from <u>drifting</u>, first-year ice?

2011 [NASA OIB-NRL DISTANCE/APLIS/ICEX] site:

- Good sequence of clear-sky NTM satellite images.
- Abundance of in situ and airborne data.
- Location on the boundary of the multiyear ice pack.

Data: satellite imagery

NTM panchromatic images, 1-meter resolution, \sim 15 km x \sim 15 km [global fiducials library: http://gfl.usgs.gov/].

Algorithm Overview:

Output: sea ice, thin ice, melt ponds, and open water

Image classification: ice, ponds, & open water

Data: airborne

NASA's Operation IceBridge

- DMS (RGB) imagery to geolocate in situ data, buoys in NTM images, & identify surface features for tracking.
- ATM surface elevations for estimating surface roughness and surface elevation gradients.

Data: in situ

<u>International Arctic Buoy</u> <u>Programme (5 buoys):</u>

- Data alignment (drifting ice... drifts).
- Information on changing surface conditions.

Snow & ice thickness measurements:

Pre-melt conditions.

<u>Ice type identifications:</u>

 Validate ice type identification in NTM imagery.

Results: FY vs. MY

- Ponds form on MY earlier by ~3 weeks.
- Maximum ponds fractions: 53% (FY) vs. 38% (MY).
- Q #1: Why did ponds form earlier on MY ice?
- Q #2: Why did the pace of melt change between ice types?
- Q #3: Where did FY ponds form first?

#1 Timing offset: it's all about the snow.

- 0-10 cm deep snow made up **54%** of surveyed MY ice area,
- 0-5 cm deep snow made up ~37%.

#2 Pace of melt: effects of surface topography

#3: Where did first-year ponds form first?

- FY-MY floe boundaries.
- Boundaries have largest surface elevation gradients.
- Pond onset likely a result of one or a combination of the following:
 - lateral meltwater transport,
 - seawater percolation.
- Importance?
 - These melt pond "hot spots" thermodynamically weaken these boundaries.

Conclusions:

- NTM imagery [from LaGrangian sites] is a valuable tool for studying sea ice processes.
- Developed an algorithm that can accurately identify melt ponds, sea ice, thin ice, and open water.
- Snow depth distribution and surface topography have important roles in melt pond evolution.
 - Ponds formed ~3 weeks earlier on MY ice due to thin snow.
 - MY drainage was spatially and temporally non-uniform due to surface topography.
 - Surface topography affects the timing and location of the earliest FY ponds.
 - Max. pond fractions were 53% (FY) and 38% (MY).

...Why was the snow so thin on the multiyear ice?

Thank you...

Acknowledgements: NASA and other contributors to the U.S. Interagency Arctic Buoy Program, the Forum for Arctic Modeling and Observational Synthesis (FAMOS) group for the helpful discussions, Wendy Ermold, Sinead Farrell, & Thomas Newman.

Webster, M. A., I. G. Rigor, D. K. Perovich, J. A. Richter-Menge, C. M. Polashenski, and B. Light (in review), Seasonal evolution of melt ponds on drifting Arctic sea ice, *J. Geophys. Res.* Oceans., doi:10.1029/2015JC011030.